
 
 

AN ALGORITHM FOR MELODY DETECTION IN  
POLYPHONIC RECORDINGS

Rui Pedro Paiva 

CISUC – Centre for Informatics and Systems of the University of Coimbra 
Department of Informatics Engineering, Pólo II – Pinhal de Marrocos 

P 3030 – 290 Coimbra, Portugal 
ruipedro@dei.uc.pt 

ABSTRACT 

This paper describes an algorithm for melody detection 
in polyphonic recordings. Our approach starts by 
obtaining a set of pitch candidates for each time frame, 
with recourse to an auditory model. Trajectories of the 
most salient pitches are then constructed. Next, note 
candidates are obtained by trajectory segmentation (in 
terms of frequency and pitch salience variations). Too 
short, low-salience and harmonically related notes are 
then eliminated. Finally, we extract the notes comprising 
the melody by selecting the most salient ones at each 
moment, exploiting melodic smoothness and removing 
spurious notes that correspond to abrupt drops in note 
saliences or durations. 
 
Keywords: Melody extraction, auditory modelling, 
multi-pitch detection, trajectory creation and 
segmentation, perceptual rules of sound organization, 
melodic smoothness.  

1 INTRODUCTION 

This paper outlines an algorithm for melody detection in 
polyphonic audio signals. The proposed system 
comprises five stages, as illustrated in Figure 1. Different 
parts of the system were described in greater detail 
detailed in other publications, e.g., [1, 2, 3, 4]. 
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Figure 1. Melody detection system overview. 

 
In the Multi-Pitch Detection (MPD) stage, the objec-

tive is to capture the most salient pitch candidates, which 
constitute the basis of possible future notes. 

Multi-Pitch Trajectory Construction (MPTC), in the 
second stage, aims to create a set of pitch tracks, formed 
by connecting consecutive pitch candidates with similar 
frequency values. 

Since the tracks resulting from the MPTC stage may 
contain more than one single note, they have to be seg-
mented. This segmentation is performed in two phases: 
frequency segmentation, aiming to separate notes with 

different MIDI values, and salience segmentation, with 
the objective of dividing consecutive notes at the same 
MIDI note number. Onset detection is carried out to 
support this task. 

In the fourth stage, irrelevant note candidates are 
eliminated, based on their saliences, durations and on 
the analysis of harmonic relations.  

In the last stage, our goal is to obtain the final set of 
notes comprising the melody of the song under analysis. 
In fact, although a significant amount of irrelevant notes 
are eliminated in the previous stage, many notes are still 
present. 

Each of the presented modules will be briefly de-
scribed in the following sections. 

2 MULTI-PITCH DETECTION (MPD) 

In the first stage of the algorithm, Multi-Pitch Detection 
(MPD) is conducted, with the objective of capturing a set 
of candidate pitches that constitute the basis of possible 
future musical notes.  

Pitch detection is carried out with recourse to an audi-
tory model, in a frame-based analysis with a 46.44 ms 
frame length and a hop size of 5.8 ms. Our approach is 
based on Slaney and Lyon’s auditory model [5]. 

This analysis comprises four stages:  
i) Conversion of the sound waveform into auditory 

nerve responses for each frequency channel, using a 
model of the ear, with particular emphasis on the coch-
lea, obtaining a so-called cochleagram;  

ii) Detection of the main periodicities in each fre-
quency channel using auto-correlation, from which a 
correlogram results;  

iii) Detection of the global periodicities in the sound 
waveform by calculation of a summary correlogram 
(SC); 

iv) Detection of the pitch candidates in each time 
frame by looking for the most salient peaks in the SC 
(maximum of five peaks selected). For each obtained 
pitch, a pitch salience is computed, which is approxi-
mately equal to the energy of the corresponding funda-
mental frequency. 

The four steps described are graphically illustrated in 
Figure 2, for a simple monophonic saxophone riff. This 
algorithm is described in greater detail in [1]. 

3 MULTI-PITCH TRAJECTORY 
CONSTRUCTION (MPTC) 

After multi-pitch detection, the goal is to quantise the 
temporal sequences of pitch estimates into note symbols 
characterized  by precise  timings  and  note  values (e.g., 
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Figure 2. Illustration of the four stages of the MPD algorithm. 

 
MIDI note numbers). Therefore, the second stage, Multi- 
Pitch Trajectory Construction (MPTC), aims to create a 
set of pitch tracks, formed by connecting consecutive 
pitch candidates with similar frequencies. To this end, we 
based ourselves on the algorithm proposed by Serra [6]. 
The idea is to find regions of stable pitches, which 
indicate the presence of musical notes.  

This algorithm is graphically illustrated in Figure 3. 
There, the black squares represent the candidate pitches 
in the current frame n. The black circles connected by 
thin continuous lines indicate the trajectories that have 
not been finished yet. The dashed lines denote peak con-
tinuation through sleeping frames. The black circles 
connected by bold lines stand for validated trajectories, 
whereas the white circles represent eliminated trajecto-
ries, due to too short lengths. Finally, the gray boxes 
indicate the maximum allowed frequency deviation for 
peak continuation in the corresponding frame. 
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Figure 3. Illustration of the MPTC algorithm. 

 
In order not to loose information on the dynamic 

properties of musical notes, e.g., frequency modulations, 
glissandos, we had especial care in guaranteeing that 
such behaviours were kept within a single track. This is 
illustrated in Figure 4. There, we can see that some of 
the obtained trajectories comprise glissando regions. 
Also, some of the trajectories include more than one 

note and should, therefore, be segmented in the third 
stage of our algorithm. 
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Figure 4. Results of the MPTC algorithm. 

 

4 TRAJECTORY SEGMENTATION 

The trajectories that result from the MPTC algorithm 
may contain more than one note and, therefore, must be 
segmented. This is the task of the third stage of the 
melody detection method.  

Two types of segmentation are required: segmenta-
tion based on frequency and on pitch salience variations. 
Both are described followingly. Our proposed algorithm 
is described in greater detail in [2]. 

4.1 Frequency-Based Segmentation 

In frequency-based segmentation, the goal is to split 
notes with different values that may be present in the 
same trajectory, taking into consideration the presence of 
glissandos and frequency modulation.  

The main issue with frequency-based segmentation is 
to approximate the frequency curve by piece-
wise-constant functions (PCFs), as a basis for the defini-
tion of MIDI notes. However, this is often a complex 
task, since musical notes, besides containing regions of 
approximately stable frequency, also contain regions of 



 
 
transition, where frequency evolves until (pseudo-
)stability, e.g., glissando. Additionally, frequency modu-
lation can also occur, where no stable frequency exists. 
Yet, an average stable fundamental frequency can be 
determined. 

Our problem, could, thus, be characterized as one of 
finding a set of piecewise-constant/linear functions that 
best approximates the original frequency curve. As un-
known variables we have the number of functions, their 
respective parameters (slope and bias – null slope if 
PCFs are used), and start and end points. 

In short words, our algorithm first quantises the fre-
quency values present in each track to the closest MIDI 
note numbers, thus obtaining a set of initial PCFs. Then, 
in order to cope with glissandos and oscillations result-
ing from vibrato, as well as frequency jitter and errors in 
the MPD stage, several stages of filtering are applied in 
order to merge relevant PCFs. 

After filtering, the precise timings for the starting end 
ending points of each PCF are adjusted. We define the 
start of the transition as the point of maximum derivative 
of the frequency curve, after it starts to move towards 
the next note, i.e., the point of maximum derivative after 
the last occurrence of the median value. 

Finally, we assign a definitive MIDI note number to 
each of the obtained PCFs for each track. In order to 
increase the robustness of the assignment procedure, we 
deal with ambiguous situations where it is not totally 
clear which is the correct MIDI value. This happens, for 
instance, when the median frequency is close to the fre-
quency border of two MIDI notes. 

The frequency-based segmentation algorithm is illus-
trated in Figure 5, for a pitch track from Mambo King’s 
“Bella Maria de Mi Alma”, where the continuous lines 
represent the obtained PCFs that approximate the origi-
nal frequency curve. 
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Figure 5. Illustration of the frequency-based 
segmentation algorithm. 

4.2 Salience-Based Segmentation 

As for salience-based segmentation, the objective is to 
separate consecutive notes that have the same 
fundamental frequencies, which the MPTC algorithm 
may have interpreted as forming one single note. This 
requires segmentation based on pitch salience minima, 
which mark the limits of each note.  

In fact, the salience value depends on the evidence of 
pitch for that particular frequency, which is strongly 
correlated, though not exactly equal, to the energy of the 
fundamental frequency under consideration. Conse-
quently, the envelope of the salience curve is similar to 
an amplitude envelope: it grows at the note onset, has 
then a more steady region and decreases at the offset. In 

this way, notes can be segmented by detecting clear min-
ima in the pitch salience curve. 

In a first attempt for performing salience-based seg-
mentation, we developed a prominent valley detection 
algorithm, which iteratively looks for all clear local min-
ima and maxima of the salience curve.  

To this end, first, all local minima and maxima are 
found. Then, only clear minima are selected. This is 
accomplished in a recursive procedure that starts by 
finding the global minimum of the salience curve. Next, 
the set of all local maxima is divided into two subsets, 
one to the left and another to the right of the global 
minimum. The global maximum for each subset is then 
obtained. After that, the global minimum is selected as a 
clear minima if its prominence, i.e., the minimum dis-
tance from its amplitude and that of both the left and 
right global maxima, is above the defined minimum 
peak-valley distance, minPvd.  

Finally, the set of all local minima is also divided into 
two new intervals, to the left and right of the global 
minimum. The described procedure is then recursively 
repeated for each of the new subsets until all clear min-
ima and respective prominences are found.  

One difficulty of the proposed approach is its lack of 
robustness. In fact, the best value for minPvd was found 
to vary from track to track, along different song ex-
cerpts. In fact, a unique value for that parameter leads to 
both missing and extra segmentation points. Also, it is 
sometimes difficult to distinguish between note endings 
and amplitude modulation in some performances. There-
fore, we improved our method by performing onset de-
tection and matching the obtained onsets with the candi-
date segmentation points that resulted from our promi-
nent valley detection algorithm. Onset detection was 
performed based on Scheirer [7] and Klapuri [8]. 

Figure 6 illustrates our algorithm for detection of can-
didate segmentation points. There, the pitch salience 
curve of a trajectory from Claudio Roditi’s performance 
of  “Rua Dona Margarida” is presented, where ‘o’ repre-
sent correct segmentation candidates and ‘*’ denote ex-
tra segmentation points. Only the correct segmentation 
candidates should be validated based on the found on-
sets. 

0 50 100 150 200 250
20

40

60

80

100

Time (k)

sF
[k

]

 

Figure 6. Illustration of the salience-based 
segmentation algorithm: initial candidate points. 

 
The results of the salience-based segmentation algo-

rithm for an excerpt from Claudio Roditi’s “Rua Dona 
Margarida” are presented in Figure 7. The gray horizon-
tal lines represent the original annotated notes, whereas 
the black lines denote the extracted notes. The small 
gray vertical lines stand for the correct segmentation 
points and the black vertical ones are the obtained re-
sults of our algorithm. It can be seen that there is an al-



 
 
most perfect match when this solution is followed. How-
ever, in some excerpts extra segmentation occurs, espe-
cially in those excerpts with strong amplitude modula-
tion. 
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Figure 7. Results of the salience-based 
segmentation algorithm. 

 

5 NOTE ELIMINATION 

The objective of the fourth stage of the melody detection 
algorithm is to delete irrelevant note candidates, based 
on their saliences, durations and on the analysis of 
harmonic relations.  

First, low-salience notes are eliminated. Next, all the 
notes that are too short are also deleted. Finally, har-
monically-related notes are discarded, based on the fact 
that some of the obtained pitch candidates are sub or 
super-harmonics of real pitches in the sound wave. 
Hence, the perceptual rules of sound organization desig-
nated as “harmonicity” and “common fate” are exploited 
[9]. 

In the “harmonicity” rule, if two notes have approxi-
mately the same onset times and are harmonically re-
lated, it is possible that they have come from the same 
source.  

As for the “common fate” rule, harmonically-related 
notes can be grouped by taking advantage of aspects 
such as common modulation, both in frequency and in 
amplitude. In fact, components coming from the same 
source tend to have synchronized and parallel changes in 
frequency and intensity (here represented by pitch sali-
ence).  

Thus, we measure the distance between frequency 
and salience curves for harmonically-related notes with 
common onsets, common offsets or inclusions. For-
mally, the distance between frequency curves is calcu-
lates as in (1), similarly to Virtanen [10]:  
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where df, represents the distance between two frequency 
trajectories, fi(t) and fj(t), during the time interval [t1, t2] 
where they both exist. The idea of Eq. (1) is to scale the 
amplitude of each curve by its average, thus, normalizing 
it. An identical procedure is performed for the salience 
curves.   

This procedure is illustrated in Figure 8 for two har-
monically-related notes from an opera excerpt with 
strong of vibrato.  We can see that the normalized fre-
quency curves are very similar, which provide good evi-
dence that the notes originated from the same source.  
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Figure 8. Illustration of similarity analysis of 
frequency curves. 

 
Additionally, we found it advantageous to also meas-

ure the distance between the salience and frequency de-
rivatives since it sometimes happens that curves can 
have high absolute distances having, however, the same 
trends. By computing the distance between derivatives, 
those curves can also be considered similar. 

Finally, we compare the saliences of pairs of har-
monically-related notes that satisfy the common fate 
requirement in order to take a decision: if the salience of 
one of the notes is much lower than the other’s, the least 
salient note is eliminated. 

6 MELODY EXTRACTION 

Finally, in the melody extraction stage the objective is to 
obtain a final set of notes comprising the melody of the 
song under analysis. In fact, although a significant 
amount of irrelevant notes is eliminated in the previous 
stage, there are still many notes present.  

In the present approach, we do not tackle the problem 
of source separation. Instead, the strategy is based on 
two assumptions, designated as the "salience principle" 
and the "melodic smoothness principle". Furthermore, 
we try to eliminate false positives, i.e., notes that are 
output by the algorithm whenever the melody is silent, 
which belong to the accompaniment parts. This algo-
rithm is described in greater detail in [1, 3, 4]. 

6.1 Selection of the Most Salient Notes 

The salience principle makes use of the fact that the main 
melodic line often stands out in the mixture. Thus, in the 
first step of the melody extraction stage, the most salient 
notes at each time are selected as initial melody note 
candidates. Details of this analysis are provided in [1]. 

The results of the implemented procedures are illus-
trated in Figure 9, for an excerpt from Pachelbel’s Ka-
non. There, the correct notes are depicted in gray and 
the black continuous lines denote the obtained melody 
notes. The dashed lines stand for the notes that result 
from the note elimination stage. We can see that some 
erroneous notes are extracted, whereas true melody 
notes are excluded. Namely, some octave errors occur.  

One of the limitations of only taking into considera-
tion pitch salience is that the notes comprising the mel-
ody are not always the most salient ones. In this situa-
tion, erroneous notes may be selected as belonging to 
the melody, whereas true notes are left out. This is par-
ticularly clear when abrupt transitions between notes are 
found, as illustrated in Figure 9. 
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Figure 9. Results of the algorithm for extraction 
of salient notes. 

 
In fact, small frequency intervals favour melody 

coherence, since smaller steps in pitch result in melodies 
more likely to be perceived as single 'streams'. Hence, 
we improved our method by smoothing out the melody 
contour, as follows. 

6.2 Melody Smoothing 

As referred above, taking into consideration only the 
most salient notes has the limitation that, frequently, 
non-melodic notes are more salient than melodic ones. 
As a consequence, erroneous notes are often picked up, 
whereas true notes are excluded. Particularly, abrupt 
transitions between notes give strong evidence that 
wrong notes were selected. In fact, small frequency tran-
sitions favour melody coherence, since smaller steps in 
pitch hang together better [9]. 

Briefly, our algorithm starts with an octave correction 
stage, which aims to tackle some of the octave errors 
that appear as a consequence of the fact that not all har-
monically-related notes are deleted at the note elimina-
tion stage.  

In the second step, we analyze the obtained notes and 
look for regions of smoothness, i.e., regions where there 
are no abrupt transitions between consecutive notes. 
Here, we define a transition as being abrupt if the inter-
vals between consecutive notes are above a fifth, i.e., 
seven semitones, as illustrated in Figure 10. There, the 
bold notes (a1, a2 and a3) are marked as abrupt. In the 
same example, four initial regions of smoothness are 
detected (R1, R2, R3 and R4).  
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Figure 10. Regions of smoothness. 

 
Then, we analyse the regions of smooth, deleting or 

substituting notes corresponding to abrupt transitions, as 
described in detail in [3]. 

The results of the implemented procedures are illus-
trated in Figure 11, for the same excerpt from Pachel-
bel’s Kanon presented before. We can see that only one 
erroneous note resulted (signaled by an ellipse), which 
corresponds to an octave error. This example is particu-

larly challenging to our melody-smoothing algorithm 
due to the periodic abrupt transitions present. Yet, the 
performance was very good. 
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Figure 11. Results of the melody-smoothing 
algorithm. 

6.3 Elimination of Spurious Notes 

As referred, when pauses between melody notes are 
fairly long, spurious notes, resulting either from noise or 
background instruments, may be included in the melody. 
We observed that, usually, such notes have lower 
saliences and shorter durations, leading to clear minima 
in the pitch salience and duration contours. 

Regarding the pitch salience contour, we start by 
computing the average pitch salience of each note in the 
extracted melody and, then, look for deep valleys in the 
pitch salience sequence. As with salience-based segmen-
tation, we detect clear minima in the salience contour 
and delete notes in deep valleys of the pitch salience 
contour.  

Regarding the duration contour, we proceeded like-
wise. However, we observed that duration variations are 
much more common than pitch salience variations. In 
this way, we decided to eliminate only isolated abrupt 
duration transitions, i.e., isolated notes delimited by 
much longer notes. Additionally, in order not to inadver-
tently delete short ornamental notes, a minimum differ-
ence of two semi-tones was defined. 

This algorithm is described with more detail in [4]. 

7 EXPERIMENTAL RESULTS 

In this paper, we present the results achieved for the 
MIREX 2005 Audio Melody Extraction Contest [11]. A 
collection of excerpts from genres such as Rock, R&B, 
Jazz and Opera, of around 30 seconds each, were used. 

We participated with the described algorithm, as well 
as a simpler version where only one pitch candidate was 
selected in each frame, rather than a multi-pitch ap-
proach. 

As for the obtained results, an average of 57.3% cor-
rectly transcribed voiced and unvoiced portions was 
achieved. Contrariwise to our previous results, the sin-
gle-pitch approach achieved a surprisingly higher accu-
racy: 60.7%. 

Taking into consideration only the voiced portions, 
the accuracy was 62.2% for the multi-pitch (MP) 
method and 58.2% for the SP method (raw pitched accu-
racy metric). 

Disregarding octave errors, the MP algorithm 
achieved 66.2%, whereas the SP attained 61.6% (raw 
chroma accuracy metric). 

Other results are listed below (SP and MP): 



 
 

- Voicing detection: 68.0%, 82.4%; 
- Voicing false alarm: 23.2% 55.8%; 
- Voicing d-prime: 1.20, 0.78; 
 
Finally, execution time is the main limitation of our 

proposed algorithm: the whole data set took around 
45000s to be processed. This very long computing time 
results mostly from the implementation of the auditory 
model: more or less 90% of the execution time is de-
voted to the MPD stage! Therefore, a more efficient 
front-end should be considered. Additionally, the Matlab 
implementation is also responsible for the resulting long 
computing time. 
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